

BEMIS-LC™ Large Caliber (105mm – 155mm) Bore Erosion Measurement and Inspection System

Designed to Inspect Large Caliber Weapon Bores

155mm Self-Propelled Scanning Assembly

3D Image Segment of 155mm Gun Bore

LaserViewer™ Analysis and Reporting Software

BEMIS-LC[™] Features

- High Resolution laser-based system for assessment of weapon bore condition
- Rugged and Portable Design for use in the field or shop
- Muzzle brake does not have to be removed during inspection
- Automated inspection process removes operator subjectivity
- 3D Precision bore erosion profiling and laserbased dimensional measurement
- High Resolution LaserVideoTM provides visual, camera-like image of entire gun tube surface
- Quantitative data for unparalleled gun tube surface and erosion analysis
- Advanced analysis and reporting software provides data in hard-copy summary or exportable to text file
- Transportable Inspection Data can be reviewed stored and reviewed at remote locations
- Automatic report generator software provides tabular summary of test results
- Operator-Configurable motion and scan control
- Quick setup with automatic calibration routine
- On-Site training available

LTC...Making Heroes™

Typical Display allows operators in-depth analysis of test results

ABORAT	ORY SER	VICES B	RANCHT	EST REP	ORT						
ATE OF I	MEASURE	MENT: 1	0/1/2003 1	2:59:08	PM						
PERATO	RS: John	Doe			-						
	YPE: M2										
	JMBER: X										
	OF ROUN										
EST PRO	MENT TE	MP: 82 6	•g. F								
EST DIRE											
	A FILENA		DLUTION:	0.5 dea							
					SPACING:	0.002 in					
			TION: 0.02								
	XIAL RES										
			S PER CA								
				CALCUI	LATION: 3	1					
	BENERAT				the muzzi						
O I E : Lan	id 1 is the	nest as no	acove u c	egrees at	the muzzi	e ena.					
OMMENT	16:										
liemeter e	alculations										
list from	Scen				Grooves					Average	Average
muzzie	009.	185	185	28.6	28.6	38.7	38.7	48.8	488		Grooves
0.5	-39.22	0.4950	0.5080	0.4965	0.5090	0.4955	0.5090	0.4950	0.5085	0.4955	0.5086
1.5	-38.72 -38.22	0.4950	0.5080	0.4955	0.5085	0.4955	0.5090	0.4945	0.5080	0.4952	0.5084
2	-37.72	0.4955		0.4955	0.5090	0.4950		0.4955			0.5086
2.5	-37.22	0.4980	0.5085	0.4955	0.5085	0.4950	0.5080	0.4955	0.5080	0.4956	0.5083
3	-38.72	0.4965	0.5090	0.4960	0.5085	0.4955	0.5080	0.4955	0.5075	0.4958	0.5083
3.5	-36.22	0.4965	0.5090	0.4960	0.5085	0.4955	0.5080	0.4965	0.5080	0.4962	0.5084
4	-35.72	0.4965	0.5090	0.4960	0.5085	0.4960	0.5080	0.4970	0.5080	0.4964	0.5083
4.5	-35.22	0.4965		0.4960		0.4965	0.5080	0.4965		0.4963	
5	-34.72				0.5080						
5.5	-34.22 -33.72		0.5090				0.5080		0.5085		
6.5	-33.72		0.5085						0.5090		
7	-32.72				0.5085				0.5090		
7.5	-32.22		0.5090		0.5085			0.4965		0.4968	
8	-31.72	0.4970	0.5085	0.4975	0.5095	0.4970	0.5095	0.4965	0.5090	0.4970	0.5092
8.5	-31.22	0.4970		0.4980	0.5095	0.4965	0.5095	0.4965	0.5090	0.4970	
9	-30.72	0.4975	0.5095	0.4980	0.5100	0.4970	0.5095	0.4965	0.5090	0.4973	0.5095
9.5	-30.22	0.4980	0.5095	0.4975	0.5105	0.4970	0.5095	0.4970	0.5090	0.4974	0.5096
10.5	-29.72 -29.22	0.4985	0.5100	0.4980	0.5105	0.4975	0.5100	0.4970	0.5095	0.4977	0.5100
11	-28.72	0.4980		0.4975	0.5110	0.4975	0.5100	0.4980	0.5100		0.5102
11.5	-28.22		0.5110		0.5110		0.5100				0.5106
12	-27.72		0.5110			0.4980		0.4985	0.5110		0.5108
12.5	-27.22		0.5110			0.4980		0.4985	0.5115		0.5108
13	-26.72		0.5110			0.4985		0.4990	0.5110		0.5108
13.5	-28.22	0.4985	0.5110			0.4990	0.5110		0.5110		0.5110
14.5	-25.72 -25.22	0.4980	0.5110	0.4985		0.4990	0.5120	0.4990		0.4986	0.5112
15.5	-25.22	0.4980	0.5105			0.4990		0.4985			0.5112
15.5	-24.22	0.4990		0.4995	0.5125	0.4995	0.5125	0.4990	0.5110	0.4991	0.5118
16	-23.72	0.4990	0.5115	0.4995	0.5125	0.4995	0.5125	0.4985	0.5110	0.4992	0.5120
16.5	-23.22	0.4995	0.5120	0.4995	0.5130	0.4995	0.5125	0.4990	0.5115	0.4995	0.5122
17	-22.72	0.4995		0.5000	0.5125	0.4995	0.5120	0.4990	0.5115	0.4995	
17.5	-22.22	0.5000		0.5000	0.5130	0.4990	0.5125	0.4990		0.4996	
18	-21.72		0.5130			0.4995		0.4995	0.5120		
18.5	-21.22		0.5135			0.4995	0.5120			0.4998	
19.5	-20.72 -20.22			0.4995		0.4995		0.5000	0.5125	0.4999	
19.5	-20.22 -19.72			0.4995	0.5125	0.4995		0.5005		0.4999	
20.5	-19.22	0.5000		0.4995	0.5120	0.5005	0.5125	0.5005	0.5130	0.5001	0.5127
21	-18.72	0.4995	0.5130	0.4995	0.5120	0.5005	0.5125	0.5005	0.5130	0.5000	0.5126
21.5	-18.22	0.4995	0.5125	0.4995	0.5120	0.5005	0.5125	0.5005	0.5130		0.5125
22	-17.72	0.4990	0.6120	0.6000	0.5120	0.5005	0.5125	0.5000	0.5130	0.4998	0.5125

Test results can be generated in tabular format

Basic Specifications:

Axial scan resolution: Up to 0.1 mm (0.004 inch) per increment

Rotary scan resolution: Up to 0.1 mm (0.004 inch) per increment

Sensor resolution: 5 microns (.00025 inch)

Sensor Linearity: 12 microns (.0005 inch)

Laser Power: < 4 mW

Laser Spot Size (max): 0.05 mm (0.002 inch)

Laser Power Classification: Class II

Power: 110/240 VAC - 50/60 Hz

Test Results Displayed: Contour view and

cross sectional

Surface contour display with 256 color, grey-scale, thermal and solid color options

BEMIS™ Large Caliber Inspection System includes:

- *LP-4210F*™ Field-Grade Data Acquisition and Control Unit Including LaserViewer Software
- Self-propelled Crawler Unit
- Laser Sensor Scanning Assembly
- Shielded Sensor Extension Cable
- Integrated Guide Tube Adapter and Calibration Set
- Hard-sided Shipping Cases

BEMIS™ Scanning 155mm Gun Bore

USA
Laser Techniques Company, LLC
information@Laser-NDT.com

SwedenCLP Systems AB
<u>t.jagerman@clpnordic.se</u>

Spain
MENPRO
antonio.oliva@menpro.es

Korea
AirTech Int'l Inc.
jay@airtechus.com